New sensing methods for scheduling variable rate irrigation to improve water use efficiency and reduce the environmental footprint : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Soil Science at Massey University, Palmerston North, New Zealand / Ahmed El-Naggar.

By: El-Naggar, Ahmed.
Contributor(s): Horne, David.
Material type: materialTypeLabelMixed materialsPublisher: Massey University, 2020Subject(s): REMOTE SENSING | WATER REQUIREMENTS | IRRIGATION | IRRIGATION WATER | CROPS | THESES | NEW ZEALANDOnline resources: Massey University Theses and Dissertations Dissertation note: Thesis (PhD in Soil Science) -- Massey University, 2020 Abstract: Irrigation is the largest user of allocated freshwater, so conservation of water use should begin with improving the efficiency of crop irrigation. Improved irrigation management is necessary for humid areas such as New Zealand in order to produce greater yields, overcome excessive irrigation and eliminate nitrogen losses due to accelerated leaching and/or denitrification. The impact of two different climatic regimes (Hawkes Bay, Manawatū) and soils (free and imperfect drainage) on irrigated pea (Pisum sativum., cv. ‘Ashton’) and barley (Hordeum vulgare., cv. ‘Carfields CKS1’) production was investigated. These experiments were conducted to determine whether variable-rate irrigation (VRI) was warranted. The results showed that both weather conditions and within-field soil variability had a significant effect on the irrigated pea and barley crops (pea yield - 4.15 and 1.75 t/ha; barley yield - 4.0 and 10.3 t/ha for freely and imperfectly drained soils, respectively). Given these results, soil spatial variability was characterised at precision scales using proximal sensor survey systems: to inform precision irrigation practice. Apparent soil electrical conductivity (ECa) data were collected by a Dualem-421S electromagnetic (EM) survey, and the data were kriged into a map and modelled to predict ECa to depth. The ECa depth models were related to soil moisture ((Sk(Bv), and the intrinsic soil differences. The method was used to guide the placement of soil moisture sensors. After quantifying precision irrigation management zones using EM technology, dynamic irrigation scheduling for a VRI system was used to efficiently irrigate a pea crop (Pisum sativum., cv. ‘Massey’) and a French bean crop (Phaseolus vulgaris., cv. ‘Contender’) over one season at the Manawatū site. The effects of two VRI scheduling methods using (i) a soil water balance model and (ii) sensors, were compared. The sensor-based technique irrigated 23–45% less water because the model-based approach overestimat
Tags from this library: No tags from this library for this title. Log in to add tags.
Holdings
Item type Current library Call number Copy number Status Date due Barcode
PDF PDF WELLINGTON ONLINE ELECTRONIC 1 Not for loan 397743

Thesis (PhD in Soil Science) -- Massey University, 2020

Irrigation is the largest user of allocated freshwater, so conservation of water use should begin with improving the efficiency of crop irrigation. Improved irrigation management is necessary for humid areas such as New Zealand in order to produce greater yields, overcome excessive irrigation and eliminate nitrogen losses due to accelerated leaching and/or denitrification. The impact of two different climatic regimes (Hawkes Bay, Manawatū) and soils (free and imperfect drainage) on irrigated pea (Pisum sativum., cv. ‘Ashton’) and barley (Hordeum vulgare., cv. ‘Carfields CKS1’) production was investigated. These experiments were conducted to determine whether variable-rate irrigation (VRI) was warranted. The results showed that both weather conditions and within-field soil variability had a significant effect on the irrigated pea and barley crops (pea yield - 4.15 and 1.75 t/ha; barley yield - 4.0 and 10.3 t/ha for freely and imperfectly drained soils, respectively). Given these results, soil spatial variability was characterised at precision scales using proximal sensor survey systems: to inform precision irrigation practice. Apparent soil electrical conductivity (ECa) data were collected by a Dualem-421S electromagnetic (EM) survey, and the data were kriged into a map and modelled to predict ECa to depth. The ECa depth models were related to soil moisture ((Sk(Bv), and the intrinsic soil differences. The method was used to guide the placement of soil moisture sensors. After quantifying precision irrigation management zones using EM technology, dynamic irrigation scheduling for a VRI system was used to efficiently irrigate a pea crop (Pisum sativum., cv. ‘Massey’) and a French bean crop (Phaseolus vulgaris., cv. ‘Contender’) over one season at the Manawatū site. The effects of two VRI scheduling methods using (i) a soil water balance model and (ii) sensors, were compared. The sensor-based technique irrigated 23–45% less water because the model-based approach overestimat

There are no comments on this title.

to post a comment.

Powered by Koha