Normal view MARC view ISBD view

An introduction to reservoir simulation using MATLAB/GNU Octave : user guide for the MATLAB reservoir simulation toolbox (MRST) / Knut-Andreas Lie, Foundation for Scientific and Industrial Research (SINTEF).

By: Lie, Knut-Andreas [author.].
Material type: materialTypeLabelBookPublisher: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2019.Description: 1 online resource.Content type: text Media type: unmediated Carrier type: volumeISBN: 9781108492430; 1108492436; 9781108591416 (ebook).Subject(s): HYDROCARBON RESERVOIRS | COMPUTER SIMULATION | OIL RESERVOIR ENGINEERING | DATA PROCESSING | MATLAB | GNU OCTAVEHoldings: ELECTRONIC Online resources: Cambridge Core ebook Open access
Contents:
1 Introduction -- 1.1 Petroleum Recovery -- 1.2 Reservoir Simulation -- 1.3 Outline of the Book -- 1.4 The First Encounter with MRST -- Part I Geological Models and Grids -- 2 Modeling Reservoir Rocks -- 2.1 Formation of Sedimentary Rocks -- 2.2 Creation of Crude Oil and Natural Gas -- 2.3 Multiscale Modeling of Permeable Rocks -- 2.3.1 Geological Characterization -- 2.3.2 Representative Elementary Volumes -- 2.3.3 Microscopic Models: The Pore Scale -- 2.3.4 Mesoscopic Models -- 2.4 Modeling Rock Properties -- 2.4.1 Porosity -- 2.4.2 Permeability -- 2.4.3 Other Parameters -- 2.5 Property Modeling in MRST -- 2.5.1 Homogeneous Models -- 2.5.2 Random and Lognormal Models -- 2.5.3 The 10th SPE Comparative Solution Project: Model 2 -- 2.5.4 The Johansen Formation -- 2.5.5 SAIGUP: Shallow-Marine Reservoirs -- 3 Grids in Subsurface Modeling -- 3.1 Structured Grids -- 3.2 Unstructured Grids -- 3.2.1 Delaunay Tessellation -- 3.2.2 Voronoi Diagrams -- 3.2.3 General Tessellations -- 3.2.4 Using an External Mesh Generator -- 3.3 Stratigraphic Grids -- 3.3.1 Corner-Point Grids -- 3.3.2 2.5D Unstructured Grids -- 3.4 Grid Structure in MRST -- 3.5 Examples of More Complex Grids -- 3.5.1 SAIGUP: Model of a Shallow-Marine Reservoir -- 3.5.2 Composite Grids -- 3.5.3 Control-Point and Boundary Conformal Grids -- 3.5.4 Multiblock Grids -- Part II Single-Phase Flow -- 4 Mathematical Models for Single-Phase Flow -- 4.1 Fundamental Concept: Darcy’s Law -- 4.2 General Flow Equations for Single-Phase Flow -- 4.3 Auxiliary Conditions and Equations -- 4.3.1 Boundary and Initial Conditions -- 4.3.2 Injection and Production Wells -- 4.3.3 Field Lines and Time-of-Flight -- 4.3.4 Tracers and Volume Partitions -- 4.4 Basic Finite-Volume Discretizations -- 4.4.1 Two-Point Flux-Approximation -- 4.4.2 Discrete div and grad Operators -- 4.4.3 Time-of-Flight and Tracer -- 5 Incompressible Solvers for Single-Phase Flow -- 5.1 Basic Data Structures in a Simulation Model -- 5.1.1 Fluid Properties -- 5.1.2 Reservoir States -- 5.1.3 Fluid Sources -- 5.1.4 Boundary Conditions -- 5.1.5 Wells -- 5.2 Incompressible Two-Point Pressure Solver --5.3 Upwind Solver for Time-of-Flight and Tracer -- 5.4 Simulation Examples -- 5.4.1 Quarter Five-Spot -- 5.4.2 Boundary Conditions -- 5.4.3 Structured versus Unstructured Stencils -- 5.4.4 Using Peaceman Well Models -- 6 Consistent Discretizations on Polyhedral Grids -- 6.1 The TPFA Method Is Not Consistent -- 6.2 The Mixed Finite-Element Method -- 6.2.1 Continuous Formulation -- 6.2.2 Discrete Formulation -- 6.2.3 Hybrid Formulation -- 6.3 Finite-Volume Methods on Mixed Hybrid Form -- 6.4 The Mimetic Method -- 6.5 Monotonicity -- 6.6 Discussion -- 7 Compressible Flow and Rapid Prototyping -- 7.1 Implicit Discretization -- 7.2 A Simulator Based on Automatic Differentiation -- 7.2.1 Model Setup and Initial State -- 7.2.2 Discrete Operators and Equations -- 7.2.3 Well Model -- 7.2.4 The Simulation Loop -- 7.3 Pressure-Dependent Viscosity -- 7.4 Non-Newtonian Fluid -- 7.5 Thermal Effects -- Part III Multiphase Flow -- 8 Mathematical Models for Multiphase Flow -- 8.1 New Physical Properties and Phenomena -- 8.1.1 Saturation -- 8.1.2 Wettability -- 8.1.3 Capillary Pressure -- 8.1.4 Relative Permeability -- 8.2 Flow Equations for Multiphase Flow -- 8.2.1 Single-Component Phases --8.2.2 Multicomponent Phases -- 8.2.3 Black-Oil Models -- 8.3 Model Reformulations for Immiscible Two-Phase Flow -- 8.3.1 Pressure Formulation -- 8.3.2 Fractional-Flow Formulation in Phase Pressure -- 8.3.3 Fractional-Flow Formulation in Global Pressure -- 8.3.4 Fractional-Flow Formulation in Phase Potential -- 8.3.5 Richards’ Equation -- 8.4 The Buckley–Leverett Theory of 1D Displacements -- 8.4.1 Horizontal Displacement -- 8.4.2 Gravity Segregation -- 8.4.3 Front Tracking: Semi-Analytical Solutions -- 9 Discretizing Hyperbolic Transport Equations -- 9.1 A New Solution Concept: Entropy-Weak Solutions -- 9.2 Conservative Finite-Volume Methods -- 9.3 Centered versus Upwind Schemes -- 9.3.1 Centered Schemes -- 9.3.2 Upwind or Godunov Schemes -- 9.3.3 Comparison of Centered and Upwind Schemes -- 9.3.4 Implicit Schemes -- 9.4 Discretization on Unstructured Polyhedral Grids -- 10 Solvers for Incompressible Immiscible Flow -- 10.1 Fluid Objects for Multiphase Flow -- 10.2 Sequential Solution Procedures -- 10.2.1 Pressure Solvers -- 10.2.2 Saturation Solvers -- 10.3 Simulation Examples -- 10.3.1 Buckley–Leverett Displacement -- 10.3.2 Inverted Gravity Column -- 10.3.3 Homogeneous Quarter Five-Spot -- 10.3.4 Heterogeneous Quarter Five-Spot: Viscous Fingering -- 10.3.5 Buoyant Migration of CO2 in a Sloping Sandbox -- 10.3.6 Water Coning and Gravity Override -- 10.3.7 The Effect of Capillary Forces – Capillary Fringe -- 10.3.8 Norne: Simplified Simulation of a Real-Field Model 323 10.4 Numerical Errors -- 10.4.1 Splitting Errors -- 10.4.2 Grid Orientation Errors -- 11 Compressible Multiphase Flow -- 11.1 Industry-Standard Simulation -- 11.2 Two-Phase Flow without Mass Transfer -- 11.3 Three-Phase Relative Permeabilities -- 11.3.1 Relative Permeability Models from ECLIPSE 100 -- 11.3.2 Evaluating Relative Permeabilities in MRST -- 11.3.3 The SPE 1, SPE 3, and SPE 9 Benchmark Cases -- 11.3.4 A Simple Three-Phase Simulator -- 11.4 PVT Behavior of Petroleum Fluids -- 11.4.1 Phase Diagrams -- 11.4.2 Reservoir Types and Their Phase Behavior during Recovery -- 11.4.3 PVT and Fluid Properties in Black-Oil Models -- 11.5 Phase Behavior in ECLIPSE Input Decks -- 11.6 The Black-Oil Equations -- 11.6.1 The Water Component -- 11.6.2 The Oil Component -- 11.6.3 The Gas Component -- 11.6.4 Appearance and Disappearance of Phases -- 11.7 Well Models -- 11.7.1 Inflow-Performance Relationships -- 11.7.2 Multisegment Wells -- 11.8 Black-Oil Simulation with MRST -- 11.8.1 Simulating the SPE 1 Benchmark Case -- 11.8.2 Comparison against a Commercial Simulator -- 11.8.3 Limitations and Potential Pitfalls -- 12 The AD-OO Framework for Reservoir Simulation -- 12.1 Overview of the Simulator Framework 414 12.2 Model Hierarchy -- 12.2.1 PhysicalModel – Generic Physical Models -- 12.2.2 ReservoirModel – Basic Reservoir Models -- 12.2.3 Black-Oil Models -- 12.2.4 Models of Wells and Production Facilities -- 12.3 Solving the Discrete Model Equations -- 12.3.1 Assembly of Linearized Systems -- 12.3.2 Nonlinear Solvers -- 12.3.3 Selection of Time-Steps -- 12.3.4 Linear Solvers -- 12.4 Simulation Examples -- 12.4.1 Depletion of a Closed/Open Compartment -- 12.4.2 An Undersaturated Sector Model -- 12.4.3 SPE 1 Instrumented with Inflow Valves -- 12.4.4 The SPE 9 Benchmark Case -- 12.5 Improving Convergence and Reducing Runtime -- Part IV Reservoir Engineering Workflows -- 13 Flow Diagnostics -- 13.1 Flow Patterns and Volumetric Connections -- 13.1.1 Volumetric Partitions -- 13.1.2 Time-of-Flight Per Partition Region: Improved Accuracy -- 13.1.3 Well Allocation Factors -- 13.2 Measures of Dynamic Heterogeneity -- 13.2.1 Flow and Storage Capacity -- 13.2.2 Lorenz Coefficient and Sweep Efficiency -- 13.3 Residence-Time Distributions -- 13.4 Case Studies -- 13.4.1 Tarbert Formation: Volumetric Connections -- 13.4.2 Heterogeneity and Optimized Well Placement -- 13.5 Interactive Flow Diagnostics Tools -- 13.5.1 Synthetic 2D Example: Improving Areal Sweep -- 13.5.2 SAIGUP: Flow Patterns and Volumetric Connections -- 14 Grid Coarsening -- 14.1 Grid Partitions -- 14.1.1 Uniform Partitions -- 14.1.2 Connected Partitions -- 14.1.3 Composite Partitions --14.2 Coarse Grid Representation in MRST -- 14.2.1 Subdivision of Coarse Faces -- 14.3 Partitioning Stratigraphic Grids -- 14.3.1 The Johansen Aquifer -- 14.3.2 The SAIGUP Model -- 14.3.3 Near Well Refinement for CaseB4 -- 14.4 More Advanced Coarsening Methods --14.5 A General Framework for Agglomerating Cells -- 14.5.1 Creating Initial Partitions -- 14.5.2 Connectivity Checks and Repair Algorithms -- 14.5.3 Indicator Functions -- 14.5.4 Merge Blocks -- 14.5.5 Refine Blocks -- 14.5.6 Examples -- 14.6 Multilevel Hierarchical Coarsening -- 14.7 General Advice and Simple Guidelines -- 15 Upscaling Petrophysical Properties -- 15.1 Upscaling for Reservoir Simulation -- 15.2 Upscaling Additive Properties -- 15.3 Upscaling Absolute Permeability -- 15.3.1 Averaging Methods -- 15.3.2 Flow-Based Upscaling -- 15.4 Upscaling Transmissibility -- 15.5 Global and Local–Global Upscaling -- 15.6 Upscaling Examples -- 15.6.1 Flow Diagnostics Quality Measure -- 15.6.2 A Model with Two Facies -- 15.6.3 SPE 10 with Six Wells -- 15.6.4 Complete Workflow Example -- 15.6.5 General Advice and Simple Guidelines -- 15.6.5 General Advice and Simple Guidelines -- Appendix The MATLAB Reservoir Simulation Toolbox 597 A.1 Getting Started with the Software -- A.1.1 Core Functionality and Add-on Modules -- A.1.2 Downloading and Installing -- A.1.3 Exploring Functionality and Getting Help -- A.1.4 Release Policy and Version Numbers -- A.1.5 Software Requirements and Backward Compatibility -- A.1.6 Terms of Usage -- A.2 Public Data Sets and Test Cases --A.3 More About Modules and Advanced Functionality -- A.3.1 Operating the Module System -- A.3.2 What Characterizes a Module? --A.3.3 List of Modules -- A.4 Rapid Prototyping Using MATLAB and MRST -- A.5 Automatic Differentiation in MRST -- References -- Index -- Usage of MRST Functions.
Summary: "This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular popularity in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods."-- Provided by publisher.
List(s) this item appears in: New Titles
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Copy number Status Date due Barcode
E-BOOK E-BOOK WELLINGTON
ONLINE
ELECTRONIC 1 Not for loan 395363

Includes bibliographical references and index.

1 Introduction -- 1.1 Petroleum Recovery -- 1.2 Reservoir Simulation -- 1.3 Outline of the Book -- 1.4 The First Encounter with MRST -- Part I Geological Models and Grids -- 2 Modeling Reservoir Rocks -- 2.1 Formation of Sedimentary Rocks -- 2.2 Creation of Crude Oil and Natural Gas -- 2.3 Multiscale Modeling of Permeable Rocks -- 2.3.1 Geological Characterization -- 2.3.2 Representative Elementary Volumes -- 2.3.3 Microscopic Models: The Pore Scale -- 2.3.4 Mesoscopic Models -- 2.4 Modeling Rock Properties -- 2.4.1 Porosity -- 2.4.2 Permeability -- 2.4.3 Other Parameters -- 2.5 Property Modeling in MRST -- 2.5.1 Homogeneous Models -- 2.5.2 Random and Lognormal Models -- 2.5.3 The 10th SPE Comparative Solution Project: Model 2 -- 2.5.4 The Johansen Formation -- 2.5.5 SAIGUP: Shallow-Marine Reservoirs -- 3 Grids in Subsurface Modeling -- 3.1 Structured Grids -- 3.2 Unstructured Grids -- 3.2.1 Delaunay Tessellation -- 3.2.2 Voronoi Diagrams -- 3.2.3 General Tessellations -- 3.2.4 Using an External Mesh Generator -- 3.3 Stratigraphic Grids -- 3.3.1 Corner-Point Grids -- 3.3.2 2.5D Unstructured Grids -- 3.4 Grid Structure in MRST -- 3.5 Examples of More Complex Grids -- 3.5.1 SAIGUP: Model of a Shallow-Marine Reservoir -- 3.5.2 Composite Grids -- 3.5.3 Control-Point and Boundary Conformal Grids -- 3.5.4 Multiblock Grids -- Part II Single-Phase Flow -- 4 Mathematical Models for Single-Phase Flow -- 4.1 Fundamental Concept: Darcy’s Law -- 4.2 General Flow Equations for Single-Phase Flow -- 4.3 Auxiliary Conditions and Equations -- 4.3.1 Boundary and Initial Conditions -- 4.3.2 Injection and Production Wells -- 4.3.3 Field Lines and Time-of-Flight -- 4.3.4 Tracers and Volume Partitions -- 4.4 Basic Finite-Volume Discretizations -- 4.4.1 Two-Point Flux-Approximation -- 4.4.2 Discrete div and grad Operators -- 4.4.3 Time-of-Flight and Tracer -- 5 Incompressible Solvers for Single-Phase Flow -- 5.1 Basic Data Structures in a Simulation Model -- 5.1.1 Fluid Properties -- 5.1.2 Reservoir States -- 5.1.3 Fluid Sources -- 5.1.4 Boundary Conditions -- 5.1.5 Wells -- 5.2 Incompressible Two-Point Pressure Solver --5.3 Upwind Solver for Time-of-Flight and Tracer -- 5.4 Simulation Examples -- 5.4.1 Quarter Five-Spot -- 5.4.2 Boundary Conditions -- 5.4.3 Structured versus Unstructured Stencils -- 5.4.4 Using Peaceman Well Models -- 6 Consistent Discretizations on Polyhedral Grids -- 6.1 The TPFA Method Is Not Consistent -- 6.2 The Mixed Finite-Element Method -- 6.2.1 Continuous Formulation -- 6.2.2 Discrete Formulation -- 6.2.3 Hybrid Formulation -- 6.3 Finite-Volume Methods on Mixed Hybrid Form -- 6.4 The Mimetic Method -- 6.5 Monotonicity -- 6.6 Discussion -- 7 Compressible Flow and Rapid Prototyping -- 7.1 Implicit Discretization -- 7.2 A Simulator Based on Automatic Differentiation -- 7.2.1 Model Setup and Initial State -- 7.2.2 Discrete Operators and Equations -- 7.2.3 Well Model -- 7.2.4 The Simulation Loop -- 7.3 Pressure-Dependent Viscosity -- 7.4 Non-Newtonian Fluid -- 7.5 Thermal Effects -- Part III Multiphase Flow -- 8 Mathematical Models for Multiphase Flow -- 8.1 New Physical Properties and Phenomena -- 8.1.1 Saturation -- 8.1.2 Wettability -- 8.1.3 Capillary Pressure -- 8.1.4 Relative Permeability -- 8.2 Flow Equations for Multiphase Flow -- 8.2.1 Single-Component Phases --8.2.2 Multicomponent Phases -- 8.2.3 Black-Oil Models -- 8.3 Model Reformulations for Immiscible Two-Phase Flow -- 8.3.1 Pressure Formulation -- 8.3.2 Fractional-Flow Formulation in Phase Pressure -- 8.3.3 Fractional-Flow Formulation in Global Pressure -- 8.3.4 Fractional-Flow Formulation in Phase Potential -- 8.3.5 Richards’ Equation -- 8.4 The Buckley–Leverett Theory of 1D Displacements -- 8.4.1 Horizontal Displacement -- 8.4.2 Gravity Segregation -- 8.4.3 Front Tracking: Semi-Analytical Solutions -- 9 Discretizing Hyperbolic Transport Equations -- 9.1 A New Solution Concept: Entropy-Weak Solutions -- 9.2 Conservative Finite-Volume Methods -- 9.3 Centered versus Upwind Schemes -- 9.3.1 Centered Schemes -- 9.3.2 Upwind or Godunov Schemes -- 9.3.3 Comparison of Centered and Upwind Schemes -- 9.3.4 Implicit Schemes -- 9.4 Discretization on Unstructured Polyhedral Grids -- 10 Solvers for Incompressible Immiscible Flow -- 10.1 Fluid Objects for Multiphase Flow -- 10.2 Sequential Solution Procedures -- 10.2.1 Pressure Solvers -- 10.2.2 Saturation Solvers -- 10.3 Simulation Examples -- 10.3.1 Buckley–Leverett Displacement -- 10.3.2 Inverted Gravity Column -- 10.3.3 Homogeneous Quarter Five-Spot -- 10.3.4 Heterogeneous Quarter Five-Spot: Viscous Fingering -- 10.3.5 Buoyant Migration of CO2 in a Sloping Sandbox -- 10.3.6 Water Coning and Gravity Override -- 10.3.7 The Effect of Capillary Forces – Capillary Fringe -- 10.3.8 Norne: Simplified Simulation of a Real-Field Model 323 10.4 Numerical Errors -- 10.4.1 Splitting Errors -- 10.4.2 Grid Orientation Errors -- 11 Compressible Multiphase Flow -- 11.1 Industry-Standard Simulation -- 11.2 Two-Phase Flow without Mass Transfer -- 11.3 Three-Phase Relative Permeabilities -- 11.3.1 Relative Permeability Models from ECLIPSE 100 -- 11.3.2 Evaluating Relative Permeabilities in MRST -- 11.3.3 The SPE 1, SPE 3, and SPE 9 Benchmark Cases -- 11.3.4 A Simple Three-Phase Simulator -- 11.4 PVT Behavior of Petroleum Fluids -- 11.4.1 Phase Diagrams -- 11.4.2 Reservoir Types and Their Phase Behavior during Recovery -- 11.4.3 PVT and Fluid Properties in Black-Oil Models -- 11.5 Phase Behavior in ECLIPSE Input Decks -- 11.6 The Black-Oil Equations -- 11.6.1 The Water Component -- 11.6.2 The Oil Component -- 11.6.3 The Gas Component -- 11.6.4 Appearance and Disappearance of Phases -- 11.7 Well Models -- 11.7.1 Inflow-Performance Relationships -- 11.7.2 Multisegment Wells -- 11.8 Black-Oil Simulation with MRST -- 11.8.1 Simulating the SPE 1 Benchmark Case -- 11.8.2 Comparison against a Commercial Simulator -- 11.8.3 Limitations and Potential Pitfalls -- 12 The AD-OO Framework for Reservoir Simulation -- 12.1 Overview of the Simulator Framework 414 12.2 Model Hierarchy -- 12.2.1 PhysicalModel – Generic Physical Models -- 12.2.2 ReservoirModel – Basic Reservoir Models -- 12.2.3 Black-Oil Models -- 12.2.4 Models of Wells and Production Facilities -- 12.3 Solving the Discrete Model Equations -- 12.3.1 Assembly of Linearized Systems -- 12.3.2 Nonlinear Solvers -- 12.3.3 Selection of Time-Steps -- 12.3.4 Linear Solvers -- 12.4 Simulation Examples -- 12.4.1 Depletion of a Closed/Open Compartment -- 12.4.2 An Undersaturated Sector Model -- 12.4.3 SPE 1 Instrumented with Inflow Valves -- 12.4.4 The SPE 9 Benchmark Case -- 12.5 Improving Convergence and Reducing Runtime -- Part IV Reservoir Engineering Workflows -- 13 Flow Diagnostics -- 13.1 Flow Patterns and Volumetric Connections -- 13.1.1 Volumetric Partitions -- 13.1.2 Time-of-Flight Per Partition Region: Improved Accuracy -- 13.1.3 Well Allocation Factors -- 13.2 Measures of Dynamic Heterogeneity -- 13.2.1 Flow and Storage Capacity -- 13.2.2 Lorenz Coefficient and Sweep Efficiency -- 13.3 Residence-Time Distributions -- 13.4 Case Studies -- 13.4.1 Tarbert Formation: Volumetric Connections -- 13.4.2 Heterogeneity and Optimized Well Placement -- 13.5 Interactive Flow Diagnostics Tools -- 13.5.1 Synthetic 2D Example: Improving Areal Sweep -- 13.5.2 SAIGUP: Flow Patterns and Volumetric Connections -- 14 Grid Coarsening -- 14.1 Grid Partitions -- 14.1.1 Uniform Partitions -- 14.1.2 Connected Partitions -- 14.1.3 Composite Partitions --14.2 Coarse Grid Representation in MRST -- 14.2.1 Subdivision of Coarse Faces -- 14.3 Partitioning Stratigraphic Grids -- 14.3.1 The Johansen Aquifer -- 14.3.2 The SAIGUP Model -- 14.3.3 Near Well Refinement for CaseB4 -- 14.4 More Advanced Coarsening Methods --14.5 A General Framework for Agglomerating Cells -- 14.5.1 Creating Initial Partitions -- 14.5.2 Connectivity Checks and Repair Algorithms -- 14.5.3 Indicator Functions -- 14.5.4 Merge Blocks -- 14.5.5 Refine Blocks -- 14.5.6 Examples -- 14.6 Multilevel Hierarchical Coarsening -- 14.7 General Advice and Simple Guidelines -- 15 Upscaling Petrophysical Properties -- 15.1 Upscaling for Reservoir Simulation -- 15.2 Upscaling Additive Properties -- 15.3 Upscaling Absolute Permeability -- 15.3.1 Averaging Methods -- 15.3.2 Flow-Based Upscaling -- 15.4 Upscaling Transmissibility -- 15.5 Global and Local–Global Upscaling -- 15.6 Upscaling Examples -- 15.6.1 Flow Diagnostics Quality Measure -- 15.6.2 A Model with Two Facies -- 15.6.3 SPE 10 with Six Wells -- 15.6.4 Complete Workflow Example -- 15.6.5 General Advice and Simple Guidelines -- 15.6.5 General Advice and Simple Guidelines -- Appendix The MATLAB Reservoir Simulation Toolbox 597 A.1 Getting Started with the Software -- A.1.1 Core Functionality and Add-on Modules -- A.1.2 Downloading and Installing -- A.1.3 Exploring Functionality and Getting Help -- A.1.4 Release Policy and Version Numbers -- A.1.5 Software Requirements and Backward Compatibility -- A.1.6 Terms of Usage -- A.2 Public Data Sets and Test Cases --A.3 More About Modules and Advanced Functionality -- A.3.1 Operating the Module System -- A.3.2 What Characterizes a Module? --A.3.3 List of Modules -- A.4 Rapid Prototyping Using MATLAB and MRST -- A.5 Automatic Differentiation in MRST -- References -- Index -- Usage of MRST Functions.

"This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular popularity in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods."-- Provided by publisher.

ELECTRONIC

There are no comments for this item.

Log in to your account to post a comment.

Powered by Koha