Modeling the large-scale interaction of climate, tectonics, and topography / by Gregory E. Tucker.

By: Tucker, Gregory E.
Contributor(s): Pennsylvania State University. Earth System Science Center.
Material type: materialTypeLabelBookSeries: Technical report series / Penn State Earth System Science Center: no. 96-003Publisher: University Park, PA : Penn State, Earth System Science Center, College of Earth & Mineral Sciences, [1996]Description: xv, 267 pages : illustrations, maps ; 29 cm.Subject(s): CATCHMENTS | HYDROLOGY | METEOROLOGY | CLIMATOLOGY | MATHEMATICAL MODELS | GEOMORPHOLOGY | ZAGROS MOUNTAINS | MODELLING | THRUST FAULTS | GEOLOGY | PLATE TECTONICSHoldings: GRETA POINT: 556.5:551.4 TUC
Contents:
LIST OF FIGURES -- LIST OF TABLES -- ACKNOWLEDGEMENTS -- 1. INTRODUCTION -- 2. LANDSCAPE EVOLUTION MODEL -- 2.1 Introduction -- 2.2 Background -- 2.3 Conceptual Overview of GOLEM -- 2.4 Governing Equations and Algorithms -- 2.4.1 Drainage Networks -- 2.4.2 Bedrock Channels -- 2.4.2.1 Non-Dimensional Form of the Bedrock Erosion Equation -- 2.4.3 Alluvial Channels -- 2.4.4 Channel Transitions -- 2.4.5 Continuity Equation for Channel Bed Elevation -- 2.4.6 Hillslope Processes -- 2.4.6.1 Regional-Scale Mode -- 2.4.6.2 Catchment-Scale Mode -- 2.4.6.3 Chemical Denudation -- 2.4.7 Numerical Methods -- 3. SENSITIVITY ANALYSIS -- 3.1 Introduction -- 3.2 Equilibrium Slope-Area Relationship -- 3.3. Controls on Landscape Architecture -- 3.3.1 Stream Profile Concavity -- 3.3.2 Bedrock-Alluvial Transition -- 3.3.3 Transient Profile Evolution -- 3.4 Strategies for Model Calibration -- 3.5 Summary and Conclusions -- 4. LANDSCAPE RESPONSE TO CLIMATE CHANGE -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Previous Models -- 4.3 Modeling Approach -- 4.3.1 Governing Equations -- 4.3.2 Precipitation Variability and Long-Term Sediment Transport Rates -- 4.4 Model Scaling -- 4.4.1 Setting -- 4.4.2 Testing the Bedrock Erosion Rule -- 4.4.3 Simulation Parameters -- 4.4.3.1 Bedrock Erodibility -- 4.4.3.2 Erosion Threshold Value -- 4.4.3.3 Hillslope Diffusivity -- 4.4.3.4 Regolith Production Rate -- 4.4.3.5 Tectonic Uplift Rate -- 4.4.3.6 Lithology -- 4.4.3.7 Initial and Boundary Conditions -- 4.4.3.8 Comments on Model Scaling -- 4.5 Characteristics of the Initial Equilibrium Simulations -- 4.6 Climate Change Scenarios -- 4.6.1 Scenario 1: Increase in Storm Frequency Only -- 4.6.2 Scenario 2: Increase in Storm Frequency, Decrease in Magnitude -- 4.6.3 Scenario 3: Increase in Storm Magnitude Only -- 4.6.4 Scenario 4: Decrease in Storm Frequency Only -- 4.6.5 Scenario 5: Decrease in Storm Frequency, Increase in Magnitude -- 4.6.6 Scenario 6: Decrease in Storm Magnitude and Mean Precipitation -- 4.6.7 Scenario 7: Increased Erosion Threshold -- 4.6.8 Scenario 8: Decreased Erosion Threshold -- 4.6.9 Experiments with Varying Initial Conditions -- 4.7 Discussion -- 4.8 Summary and Conclusions -- 5. EROSIONAL DYNAMICS, FLEXURAL ISOSTASY, AND LONG-LIVED ESCARPMENTS -- 5.1 Introduction -- 5.2 Landscape Evolution Model -- 5.2.1 Sediment Production -- 5.2.2 Alluvial and Bedrock Channels -- 5.2.3 Hillslope Processes -- 5.2.4 Treatment of Drainage Divides -- 5.2.5 Flexural Isostasy -- 5.3 Model Results: One-Dimensional Models -- 5.3.1 Transport-Limited Models -- 5.3.2 Supply-Limited Models -- 5.3.3 Low Weathering Rate Models -- 5.4 Model Results: Two-Dimensional Models -- 5.4.1 Transport-Limited Versus Supply-Limited Models -- 5.4.2 Models With Flexural Isostasy -- 5.5 Discussion and Conclusions -- 6. TOPOGRAPHY AND DRAINAGE EVOLUTION IN A FOLD AND THRUST BELT: MODELING THE ZAGROS STREAMS -- 6.1 Introduction -- 6.2 Geologic Setting -- 6.2.1 Tectonic History -- 6.2.2 Structure and Physiography -- 6.3 Transverse Drainage -- 6.3.1 Drainage Anomalies -- 6.3.2 Hypothesized Origins of the Drainage Anomaly -- 6.4 Criteria for Successful Models -- 6.5 Model Setup -- 6.5.1 Initial and Boundary Conditions -- 6.5.2 Tectonic Parameters -- 6.6 Model Calibration -- 6.7 Model Results -- 6.7.1 Control Simulation -- 6.7.2 “Inner Luristan” Scenario -- 6.7.3 Channel Erosion as a Function of Stream Power -- 6.74 Luristan Revisited -- 6.7.5 Evaluation of Channel Erosion Rules for the Zagros -- 6.7.6 Models Incorporating a Finite Sediment Transport Capacity -- 6.7.7 Other Experiments -- 6.8 Discussion and Conclusions -- 6.8.1 Relationship Between Streams and Structural Highs -- 6.8.2 Channel Erosion Rules and Landscape Morphology -- 6.8.3 Controls on the Formation of Water and Wind Gaps -- 7. PREDICTING SEDIMENT FLUX FROM FOLD AND THRUST BELTS -- 7.1 Introduction -- 7.2 Model Parameters and Boundary Conditions -- 7.3 Results and Discussion -- 7.3.1 Morphotectonic Evolution -- 7.3.2 Sediment Flux Evolution -- 7.3.2.1 Lithologic Controls on Sediment Supply -- 7.3.2.2 Stream Capture and Shifting Depocenters -- 7.3.3 Sediment Ponding -- 7.3.4 Implications for General-Purpose Basin Fill Models -- 7.4 Conclusions -- 8. CONCLUSIONS -- 8.1 Summary of Results -- 8.2 Directions for Future Research -- REFERENCES -- APPENDIX: SOURCE INFORMATION FOR DATA SETS USED IN CHAPTER 4 -- A.1 Mahantango Watershed 30-Meter DEM -- A.2 WE38 Watershed 5-Meter DEM -- A.3 Digitized Geologic Map of the State of Pennsylvania -- A.4 Data Set Access.
Dissertation note: Originally presented as the author's thesis (Ph. D.)--Pennsylvania State University, 1996.
Tags from this library: No tags from this library for this title. Log in to add tags.
Item type Current location Call number Copy number Status Date due Barcode
BOOK BOOK WELLINGTON
BOOKS
556.5:551.4 TUC 1 Available B020968

Originally presented as the author's thesis (Ph. D.)--Pennsylvania State University, 1996.

Includes bibliographical references (pages 245-265).

LIST OF FIGURES -- LIST OF TABLES -- ACKNOWLEDGEMENTS -- 1. INTRODUCTION -- 2. LANDSCAPE EVOLUTION MODEL -- 2.1 Introduction -- 2.2 Background -- 2.3 Conceptual Overview of GOLEM -- 2.4 Governing Equations and Algorithms -- 2.4.1 Drainage Networks -- 2.4.2 Bedrock Channels -- 2.4.2.1 Non-Dimensional Form of the Bedrock Erosion Equation -- 2.4.3 Alluvial Channels -- 2.4.4 Channel Transitions -- 2.4.5 Continuity Equation for Channel Bed Elevation -- 2.4.6 Hillslope Processes -- 2.4.6.1 Regional-Scale Mode -- 2.4.6.2 Catchment-Scale Mode -- 2.4.6.3 Chemical Denudation -- 2.4.7 Numerical Methods -- 3. SENSITIVITY ANALYSIS -- 3.1 Introduction -- 3.2 Equilibrium Slope-Area Relationship -- 3.3. Controls on Landscape Architecture -- 3.3.1 Stream Profile Concavity -- 3.3.2 Bedrock-Alluvial Transition -- 3.3.3 Transient Profile Evolution -- 3.4 Strategies for Model Calibration -- 3.5 Summary and Conclusions -- 4. LANDSCAPE RESPONSE TO CLIMATE CHANGE -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Previous Models -- 4.3 Modeling Approach -- 4.3.1 Governing Equations -- 4.3.2 Precipitation Variability and Long-Term Sediment Transport Rates -- 4.4 Model Scaling -- 4.4.1 Setting -- 4.4.2 Testing the Bedrock Erosion Rule -- 4.4.3 Simulation Parameters -- 4.4.3.1 Bedrock Erodibility -- 4.4.3.2 Erosion Threshold Value -- 4.4.3.3 Hillslope Diffusivity -- 4.4.3.4 Regolith Production Rate -- 4.4.3.5 Tectonic Uplift Rate -- 4.4.3.6 Lithology -- 4.4.3.7 Initial and Boundary Conditions -- 4.4.3.8 Comments on Model Scaling -- 4.5 Characteristics of the Initial Equilibrium Simulations -- 4.6 Climate Change Scenarios -- 4.6.1 Scenario 1: Increase in Storm Frequency Only -- 4.6.2 Scenario 2: Increase in Storm Frequency, Decrease in Magnitude -- 4.6.3 Scenario 3: Increase in Storm Magnitude Only -- 4.6.4 Scenario 4: Decrease in Storm Frequency Only -- 4.6.5 Scenario 5: Decrease in Storm Frequency, Increase in Magnitude -- 4.6.6 Scenario 6: Decrease in Storm Magnitude and Mean Precipitation -- 4.6.7 Scenario 7: Increased Erosion Threshold -- 4.6.8 Scenario 8: Decreased Erosion Threshold -- 4.6.9 Experiments with Varying Initial Conditions -- 4.7 Discussion -- 4.8 Summary and Conclusions -- 5. EROSIONAL DYNAMICS, FLEXURAL ISOSTASY, AND LONG-LIVED ESCARPMENTS -- 5.1 Introduction -- 5.2 Landscape Evolution Model -- 5.2.1 Sediment Production -- 5.2.2 Alluvial and Bedrock Channels -- 5.2.3 Hillslope Processes -- 5.2.4 Treatment of Drainage Divides -- 5.2.5 Flexural Isostasy -- 5.3 Model Results: One-Dimensional Models -- 5.3.1 Transport-Limited Models -- 5.3.2 Supply-Limited Models -- 5.3.3 Low Weathering Rate Models -- 5.4 Model Results: Two-Dimensional Models -- 5.4.1 Transport-Limited Versus Supply-Limited Models -- 5.4.2 Models With Flexural Isostasy -- 5.5 Discussion and Conclusions -- 6. TOPOGRAPHY AND DRAINAGE EVOLUTION IN A FOLD AND THRUST BELT: MODELING THE ZAGROS STREAMS -- 6.1 Introduction -- 6.2 Geologic Setting -- 6.2.1 Tectonic History -- 6.2.2 Structure and Physiography -- 6.3 Transverse Drainage -- 6.3.1 Drainage Anomalies -- 6.3.2 Hypothesized Origins of the Drainage Anomaly -- 6.4 Criteria for Successful Models -- 6.5 Model Setup -- 6.5.1 Initial and Boundary Conditions -- 6.5.2 Tectonic Parameters -- 6.6 Model Calibration -- 6.7 Model Results -- 6.7.1 Control Simulation -- 6.7.2 “Inner Luristan” Scenario -- 6.7.3 Channel Erosion as a Function of Stream Power -- 6.74 Luristan Revisited -- 6.7.5 Evaluation of Channel Erosion Rules for the Zagros -- 6.7.6 Models Incorporating a Finite Sediment Transport Capacity -- 6.7.7 Other Experiments -- 6.8 Discussion and Conclusions -- 6.8.1 Relationship Between Streams and Structural Highs -- 6.8.2 Channel Erosion Rules and Landscape Morphology -- 6.8.3 Controls on the Formation of Water and Wind Gaps -- 7. PREDICTING SEDIMENT FLUX FROM FOLD AND THRUST BELTS -- 7.1 Introduction -- 7.2 Model Parameters and Boundary Conditions -- 7.3 Results and Discussion -- 7.3.1 Morphotectonic Evolution -- 7.3.2 Sediment Flux Evolution -- 7.3.2.1 Lithologic Controls on Sediment Supply -- 7.3.2.2 Stream Capture and Shifting Depocenters -- 7.3.3 Sediment Ponding -- 7.3.4 Implications for General-Purpose Basin Fill Models -- 7.4 Conclusions -- 8. CONCLUSIONS -- 8.1 Summary of Results -- 8.2 Directions for Future Research -- REFERENCES -- APPENDIX: SOURCE INFORMATION FOR DATA SETS USED IN CHAPTER 4 -- A.1 Mahantango Watershed 30-Meter DEM -- A.2 WE38 Watershed 5-Meter DEM -- A.3 Digitized Geologic Map of the State of Pennsylvania -- A.4 Data Set Access.

GRETA POINT: 556.5:551.4 TUC

There are no comments on this title.

to post a comment.

Powered by Koha